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There is an increasing interest among national statistical institutes (NSIs) to use data that are generated as 

a by-product of processes not directly related to statistical production purposes in the production of offi-

cial statistics. Such data sources are sometimes referred to as ‘Big Data’; examples are time and location 

of network activity available from mobile phone companies, social media messages from Twitter and 
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Abstract

In this paper we consider estimation of unobserved 

components in state space models using a dynamic fac-

tor approach to incorporate auxiliary information from 

high-dimensional data sources. We apply the methodol-

ogy to unemployment estimation as done by Statistics 

Netherlands, who uses a multivariate state space model to 

produce monthly figures for unemployment using series 

observed with the labour force survey (LFS). We extend 

the model by including auxiliary series of Google Trends 

about job-search and economic uncertainty, and claimant 

counts, partially observed at higher frequencies. Our fac-

tor model allows for nowcasting the variable of interest, 

providing reliable unemployment estimates in real-time 

before LFS data become available.
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factor models, Google trends, high-dimensional data analysis, 
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Facebook, sensor data, and internet search behaviour from Google Trends. A common problem with this 

type of data sources is that they are likely selective with respect to an intended target population. If such 

data sources are directly used to produce statistical information, then the potential selection bias of these 

data sources must be accounted for, which is often a hard task since Big Data sources are often noisy 

and generally contain no auxiliary variables, which are required for bias correction. These problems can 

be circumvented using them as covariates in model-based inference procedures to make precise detailed 

and timely survey estimates, since they come at a high frequency and are, therefore, very timely. These 

techniques are known in the literature as small area estimation and nowcasting (Rao & Molina, 2015).

Official statistics are generally based on repeated samples. Therefore, multivariate time series 

models are potentially fruitful to improve the precision and timeliness of domain estimates with sur-

vey data obtained in preceding the reference periods and other domains. The predictive power of these 

models can be further improved by incorporating auxiliary series that are related with the target series 

observed with a repeated survey.

In this paper, we investigate how auxiliary series derived from Big Data sources and registers 

can be combined with time series observed with repeated samples in high-dimensional multivariate 

structural time series (STS) models. We consider Google Trends and claimant counts as auxiliary 

series for monthly unemployment estimates observed with a continuously conducted sample survey. 

Big Data sources have the problem that they are noisy and potentially (partly) irrelevant, and, as such, 

care must be taken when using them for the production of official statistics. We show that, using a 

dynamic factor model in state space form, relevant information can be extracted from such auxiliary 

high-dimensional data sources, while guarding against the inclusion of irrelevant data.

Statistical information about a country’s labour force is generally obtained from labour force sur-

veys, since the required information is not available from registrations or other administrative data 

sources. The Dutch LFS is based on a rotating panel design, where monthly household samples are 

observed five times with quarterly intervals. These figures are, however, considered too volatile to 

produce sufficiently reliable monthly estimates for the employed and the unemployed labour force at 

monthly frequency. For this reason Statistics Netherlands estimates monthly unemployment figures, 

together with its change, as unobserved components in a state space model where the observed series 

come from the monthly Dutch LFS, using a model originally proposed by Pfeffermann (1991). This 

method improves the precision of the monthly estimates for unemployment with sample information 

from previous periods and can, therefore, be seen as a form of small area estimation. In addition it 

accounts for rotation group bias (Bailar, 1975), serial correlation due to partial sample overlap and 

discontinuities due to several major survey redesigns (van den Brakel & Krieg, 2015).

Time series estimates for the unemployment can be further improved by including related auxiliary 

series. The purpose is twofold. First, auxiliary series can further improve the precision of the time 

series predictions. In this regard, Harvey and Chung (2000) propose a bivariate state space model to 

combine a univariate series of the monthly unemployed labour force derived from the UK LFS, with 

the univariate auxiliary series of claimant counts. The latter series represents the number of people 

claiming unemployment benefits. It is an administrative source, which is not available for every coun-

try, and, as for the Netherlands, it can be affected by the same publication delay of the labour force 

series. Second, auxiliary series derived from Big Data sources like Google Trends are generally avail-

able at a higher frequency than the monthly series of the LFS. Combining both series in a time series 

model allows to make early predictions for the survey outcomes in real-time at the moment that the 

outcomes for the auxiliary series are available, but the survey data not yet, which is in the literature 

known as nowcasting, in other words, ‘forecasting the present’.

In this paper, we extend the state space model used by Statistics Netherlands in order to combine 

the survey data with the claimant counts and the high-dimensional auxiliary series of Google Trends 
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about job-search and economic uncertainty, as they could yield more information than a univariate 

one, which is not affected by publication lags and that can eventually be observed at a higher fre-

quency than the labour force series. This paper contributes to the existing literature by proposing a 

method to include a high-dimensional auxiliary series in a state space model in order to improve the 

(real-time) estimation of unobserved components. The model accounts for the rotating panel design 

underlying the sample survey series, combines series observed at different frequencies and deals with 

missing observations at the end of the sample due to publication delays. It handles the curse of dimen-

sionality that arises from including a large number of series related to the unobserved components, by 

extracting their common factors.

Besides claimant counts, the majority of the information related to unemployment is nowadays 

available on the internet; from job advertisements to resumé’s templates and websites of recruit-

ment agencies. We, therefore, follow the idea originating in Choi and Varian (2009), Askitas and 

Zimmermann (2009) and Suhoy (2009) of using terms related to job and economic uncertainty, 

searched on Google in the Netherlands. Since 2004, these time series are freely downloadable in re-

al-time from the Google Trends tool, at a monthly or higher frequency. As from the onset it is unclear 

which search terms are relevant and if so, to which extent, care must be taken not to model spurious 

relationships with regards to the labour force series of interest, which could have a detrimental effect 

on the estimation of unemployment, such as happened for the widely publicised case of Google Flu 

Trends (Lazer etal., 2014). We avoid this problem by employing a targeting technique which allows 

us to carry out a first selection of those Google Trends that are related to the Dutch unemployment. 

This is achieved with the elastic net (Hastie & Zou, 2005), which is commonly used in statistics and 

econometrics as a variable selection technique in high-dimensional time series models (Bai & Ng, 

2008; Hastie etal., 2015).

Our method allows to exploit the high-frequency and/or real-time information of the auxiliary 

series, and to use it in order to nowcast the unemployment, before the publication of labour force 

data. As the number of search terms related to unemployment can easily become large, we employ the 

two-step estimator of Doz etal. (2011), which combines factor models with the Kalman filter, to deal 

both with the high-dimensionality of the auxiliary series and with the estimation of the state space 

model. The above-mentioned estimator is generally used to improve the nowcast of variables that are 

observed such as GDP (see Giannone etal., 2008; Hindrayanto etal., 2016 for applications to the 

United States and the euro area), which is not the case for the unemployment. Nonetheless, D’Amuri 

and Marcucci (2017), Naccarato etal. (2018) and Maas (2019) are all recent studies that use Google 

Trends to nowcast and forecast the unemployment, by treating the latter as  dependent variable known

in time series models where the Google searches are part of the explanatory variables. To the best of 

our knowledge, our paper is the first one to use Google Trends in order to nowcast the latent, unob-

served, structural components of unemployment, that is, trend and seasonal, in a state space model 

where the observed series are the survey measures.

We evaluate the performance of our proposed method via Monte Carlo simulations and find that 

our method can yield large improvements in terms of Mean Squared Forecast Error (MSFE) of the 

unobserved components’ nowcasts. We then assess whether the accuracy of the unemployment’s 

estimation and nowcast improves with our high-dimensional state space model, respectively, from 

in-sample and out-of-sample results. The latter consists of a recursive nowcast. We do not venture 

into forecasting exercises as Google Trends are considered to be more helpful in predicting the pres-

ent rather than the future of economic activities (Choi & Varian, 2012). We conclude that Google 

Trends can significantly improve the fit of the model, although the magnitude of these improvements 

is sensitive to aspects of the data and the model specification, such as the frequency of observation 

of the Google Trends, the number of Google Trends’ factors included in the model, and the level of 
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estimation accuracy provided by the first step of the two-step estimation procedure. We finally note 

that the Google Trends in our analysis have a purely predictive role. We extract the common infor-

mation contained in these series, by estimating their common factors, and use it in order to (possibly) 

improve the in-sample estimation and especially the nowcast of the Dutch unemployment. We do not 

attach any causal relationship between the individual search terms and the latter series.

The remainder of the paper is organised as follows. Section 2 discusses the data used in the 

empirical analysis. Section 3.1 describes the state space model that is currently used by Statistics 

Netherlands to estimate the unemployment. Section 3.2 focuses on our proposed method to include a 

high-dimensional auxiliary series in the aforementioned model. Sections 4 and 5 report, respectively, 

the simulation and empirical results for our method. Section 6 concludes.
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th wave of the panel, =1,…,5. After the fifth interview, the j

sample of households leaves the panel. This rotation design implies that in each month five independent 

samples are observed. The generalised regression (GREG, i.e. design-based) estimator (Särndal etal., 

1992) is used to obtain five independent direct estimates for the unemployed labour force, which is de-

fined as a population total. This generates over time a five-dimensional time series of the unemployed 

labour force. Table 1 provides a visualisation for the rotation panel design of the Dutch LFS.

Rotating panel designs generally suffer from Rotation Group Bias (RGB), which refers to the phe-

nomena that there are systematic differences among the observations in the subsequent waves (Bailar, 

1975). In the Dutch LFS the estimates for the unemployment based on the first wave are indeed sys-

tematically larger compared to the estimates based on the follow-up waves (van den Brakel & Krieg, 

2015). This is the net results of different factors:

1. Selective nonresponse among the subsequent waves, that is, panel attrition.

 

 

 

 

 

 

 

 

 2. Systematic differences due to different data collection models that are applied to the waves. Until 2010 

data collection in the first wave was based on face-to-face interviewing. Between 2010 and 2012 data 

collection in the first wave was based on telephone interviewing for households for which a telephone 

number of a landline telephone connection was available and face-to-face interviewing for the remain-

ing households. After 2012 data collection in the first wave was based on a sequential mixed-mode 

design that starts with Web interviewing with a follow-up using telephone interviewing and face-to-

face interviewing. Data collection in the follow-up waves is based on telephone interviewing only.

 

 

 

 

 

 

 

 

 3. Differences in wording and questionnaire design used in the waves. In the first wave a block of 

questions is used to verify the status of the respondent on the labour force market. In the follow-up 

waves the questionnaire focuses on differences that occurred compared to the previous interview, 

instead of repeating the battery of questions.

 

 

 

 

 

 

 

 

 4. Panel conditioning effects, that is, systematic changes in the behaviour of the respondents. For ex-

ample, questions about activities to find a job in the first wave might increase the search activities 
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of the unemployed respondents in the panel. Respondents might also systematically adjust their 

answers in the follow-up waves, since they learn how to keep the routing through the questionnaire 

as short as possible.

The Dutch labour force is subject to a 1-month publication delay, which means that the sample esti-

mates for month  become available in month +1. In order to have more timely and precise estimates t t

of the unemployment, we extend the model by including, respectively, auxiliary series of weekly/

monthly Google Trends about job-search and economic uncertainty, and monthly claimant counts, 

in the Netherlands. Claimant counts are the number of registered people that receive unemployment 

benefits. The claimant counts for month  become available in month +1.t t

Google Trends are indexes of search activity. Each index measures the fraction of queries that 

include the term in question in the chosen geography at a particular time, relative to the total number 

of queries at that time. The maximum value of the index is set to be 100. According to the length of 

the selected period, the data can be downloaded at either monthly, weekly or higher frequencies. The 

series are standardised according to the chosen period and their values can, therefore, vary according 

to the period’s length (Stephens-Davidowitz & Varian, 2015). We use weekly and monthly Google 

Trends for each search term. Google Trends are available in real-time (i.e. they are available in period 

t for period , independently on whether the period is a week or a month).t

The list of Google search terms used in the empirical analysis of this paper, together with their 

translation/explanation, is reported in Tables S1 and S2. A first set of terms was chosen by thinking of 

queries that could be made by unemployed people in the Netherlands. The rest of the terms has been 

chosen using the Google Correlate tool and selecting the queries that are highly correlated to each 

term of the initial set, and that have a meaningful relation to unemployment and, more generally, eco-

nomic uncertainty. Later in the paper we mention that we need non-stationary (e.g. persistent) Google 

Trends for our model. Correlations between non-stationary series can be spurious and in this respect 

Google Correlate is not an ideal tool in order to choose search terms. In Section 5 we explain how to 

circumvent this problem (i.e. by first ‘targeting’ the Google Trends).

Figure 1 displays the time series of the five waves of the unemployed labour force, together with 

the claimant counts and an example of job-related Google query. They all seem to be following the 

same trend, which already shows the potential of using this auxiliary information in estimating the 

unemployment.

 

 

 

 

 

 

 

 

 T A B L E  1  An 18-months visualisation for the rotation panel design of the Dutch LFS. Each letter represents a 

sample. The lower-case letters denote samples that entered the panel before the start of this 18-months period, whereas 

the capital letters indicate samples that entered the panel from the first month of this period onwards. Each column 

shows the samples that are interviewed in the corresponding month. Every month a new sample enters the panel and is 

interviewed five times at a quarterly frequency. After the fifth interview, the sample of households leaves the panel
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order to account for this autocorrelation, the survey errors are treated as state variables, which follow 

the transition equation below. 
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The STS model (1) as well as the models proposed in the following sections are fitted with the 

Kalman filter after putting the model in this state space form. We use an exact initialisation for the 

initial values of the state variables of the sampling error and a diffuse initialisation for the other state 

variables. It is common to call hyperparameters the parameters that define the stochastic properties 

of the measurement equation and the transition equation of the state space model. These are the pa-

rameters that are assumed to be known in the Kalman filter (Durbin & Koopman, 2012, Chapter 2). 

In our case the hyperparameters are  and all the parameters that enter the covariance matrices of 

the innovations. These hyperparameters are estimated by maximum likelihood using the Broyden–

Fletcher–Goldfarh–Shanno (BFGS) optimisation algorithm. The additional uncertainty of using max-

imum likelihood estimates for the hyperparameters in the Kalman filter is ignored in the standard 

errors of the filtered state variables. Since the observed time series contains 185 monthly periods, 

this additional uncertainty can be ignored. See also Bollineni-Balabay etal. (2017) for details. Both 

the simulation and estimation results in Sections 4 and 5 are obtained using the statistical software R.

Assuming normality of the innovations is common in state space models because the hyperparam-

eters of the model are estimated by maximising a Gaussian log-likelihood which is evaluated by the 

Kalman filter. Moreover, under normality, the Kalman filter yields the minimum variance unbiased 
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case we can further rely on quasi-maximum likelihood (QML) theory in order to perform inference 
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we shall use, if needed, the appropriate expression for the covariance matrix of the QML estimators, 
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1994, Chapter 13). In Section 4 of the supplementary material we conduct a Monte Carlo simulations 

study and find that deviations from normality are not of concern for the performance our method.
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 by n, which can be large. In addition, we can expect the Google 

Trends to be very noisy, such that the signal about unemployment contained in them is weak. We, there-

fore, need to address the high-dimensionality of these auxiliary series, in order to make the dimension of 

our state space model manageable for estimation and extract the relevant information from these series. 

For this purpose we employ a factor model which achieves both by retaining the information of these  

time series in a few common factors. Moreover, when dealing with mixed frequency variables and with 

publication delays, we can encounter ‘jagged edge’ datasets, which have missing values at the end of the 

sample period. The Kalman filter computes a prediction for the unobserved components in presence of 

missing observations for the respective observable variables. The two-step estimator by Doz etal. (2011) 

combines factor models with the Kalman filter and hence addresses both of these issues. In the remainder 

of this section we explain in detail how this estimator can be employed to nowcast the lower-frequency 

unobserved components of the labour force model using information from higher-frequency or real-time 

auxiliary series. The idea is to first use principal component analysis (PCA) to reduce the dimensionality 

of the Google Trends into a few common factors and then, to re-estimate the factors with the Kalman filter, 

together with the state variables of the labour force series.
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We consider the following state space representation of the dynamic factor model for the Google 

Trends, with respective measurement and transition equations, as we would like to link it to the state 

space model used to estimate the unemployment (1): 
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We consider three specifications for the idiosyncratic components and the factor loadings:

1. Homoskedastic idiosyncratic components and dense loadings: 

 

 

 

 

 

 

 

 

 2. Homoskedastic idiosyncratic components and sparse loadings. The first half of the elements in the 

loadings are set equal to zero. This specification reflects the likely empirical case that some of the 

Google Trends are not related to the change in unemployment: 

 

 

 

 

 

 

 

 

 3. Heteroskedastic idiosyncratic components and dense loadings. The homoskedasticity assumption 

is here relaxed, again as not being realistic for the job-search terms: 
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In every setting, both the bias and the variance of the MSFE tend to decrease with the magnitude 

of the correlation parameter. The improvement is more pronounced for the slope rather than the level 

of the trend. For the largest value of the correlation, with respect to the model which does not include 

auxiliary information, the gain in MSFE for the level and the slope is, respectively, of around 25% and 

75%. Moreover, for low values of 0.2), the MSFE does not deteriorate with respect to the bench  ( -

mark model. This implies that our proposed method is robust to the inclusion of auxiliary information 

that does not have predictive power for the state variables of interest. In Section 4 of the supplementary 

material we report and examine additional simulation results with non-Gaussian idiosyncratic compo-

nents, and draw the same conclusions discussed above for the MSFE and the variance of the state vari-

ables’ nowcasts. The bias instead worsens while deviating from Gaussianity, but it does not affect the 

MSFE as it only accounts for a small part of the latter measure. We, therefore, conclude that the perfor-

mance of our method is overall robust to deviations from Gaussianity of the idiosyncratic components.
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Heteroskedastic idiosyncratic components and dense loadings
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The decision to focus the simulation study on the nowcast (rather than the in-sample) performance 

of our method, is motivated by the fact that the added value of the Google Trends over the claimant 

counts is their real-time availability, which can be used to nowcast the unemployment. Nonetheless, 

for completeness, in the empirical application of the next section we report the results also for the 

in-sample performance of our method.
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, rather than the other two state variables, 

with respect to the models that include the claimant counts.

Including two instead of one factor clearly increases the complexity of the model, which is re-

flected in smaller accuracy gains (in the CC & GT model probably also due to the decreased mag-

nitude of the correlation parameter with the claimant counts), especially for the nowcast of the state 

variables, with respect to including only one factor. Nonetheless, the correlations with both factors are 

individually and jointly significantly different from zero, indicating that both factors bring additional 

information that helps in predicting the Dutch unemployment.

Printed by [R
oyal Statistical Society - 087.006.072.150 - /doi/epdf/10.1111/rssa.12626] at [08/01/2021].
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Notice that in general all the relative measures of accuracy are below one, indicating that both 

the claimant counts and the Google Trends improve the estimation and nowcast accuracy of the 

unemployment and its change. Even when the Google Trends are not targeted and the correlation 

parameter with their factor is not significantly different from zero, the measures are never drasti-

cally above one, meaning that our method tends to ignore auxiliary series that are not helpful in 

predicting the target variable.

Finally, when we specified the covariance matrix (9) in Section 3.2, we did not ant le
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not significantly different from zero. We, therefore, conclude that the specification of the covariance 

matrix (9) is appropriate.
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. The correlation parameter with 

the claimant counts remains large and significant. In contrast, the correlation parameter with the first 

factor of the Google Trends is not significantly different from zero and there is a weak evidence for 

the correlation parameter with the second factor to be significantly different from zero. For this reason 

we continue the analysis by considering two factors in the model.

Estimating  and  on the weekly Google Trends improves the measures of accuracy only for the 

CC & GT model and not for the GT model. An additional iteration of the two step estimator, in order 

to obtain more accurate estimates of  and , achieves instead better nowcasts for both the GT and the  

CC & GT models (and also better in-sample estimates for the latter model), and a similar performance 

to the models which employ the monthly Google trends and include two factors. Notice that the values 

of the log-likelihood for these two models increased with respect to the same model specifications 

that use the original two-step estimation (without the additional iteration). The latter result, as pointed 

out in the explanation of the iterated estimation of  and  at the beginning of this section, is to be  

expected. Despite the above-mentioned improvements in estimation/nowcast accuracy, the correlation 

parameters with the Google Trends’ factors are always insignificant. The aggregation of the Google 

Trends from the weekly to the monthly frequency yields time series that are more noisy with respect 

to the Google Trends that are directly observed at the monthly frequency and detecting significant 

results, therefore, becomes harder.

Finally, even though weekly Google Trends allow to perform the monthly nowcasts on a weekly 

basis, we notice that, in general, the precision of the nowcast does not monotonically improve with 

the number of weeks. If the high-dimensional state space model could be expressed and estimated on 

the highest frequency, the weekly gains in nowcast accuracy could be more evident. Nonetheless, we 
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 Week 3 0.956 0.954 0.9220.816 0.832 0.831 0.806 0.821

(Continues)
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are limited by the transition equations for the RGB and the survey errors, to estimate the model on the 

monthly frequency.

Figures 2–4 compare the point nowcasts, respectively, of the ch ment, its trend, ang

ang

ang

ang

ang

ang

ang

ang

ange in unem

e in unem

e in unem

e in unem

e in unem

e in unem

e in unem

e in unem

e in unemplo

plo

plo

plo

plo

plo

plo

plo

ploy

y

y

y

y

y

y

y

y

and the population parameter, obtained with the baseline, the CC, the T models which  G

 G

 G

 G

 G

 G

 G

 G

 GT and CC & G

T and CC & G

T and CC & G

T and CC & G

T and CC & G

T and CC & G

T and CC & G

T and CC & G

T and CC & G

employ monthly Google Trends and include two of their factors. From t st , it is evident that he f

he f

he f

he f

he f

he f

he f

he f

he fir

ir

ir

ir

ir

ir

ir

ir

ir  g

 g

 g

 g

 g

 g

 g

 g

 gr

r

r

r

r

r

r

r

raph

aph

aph

aph

aph

aph

aph

aph

aph

the models including claimant counts tend to deviate from the baseline el. latter, in contrast, mod

mod

mod

mod

mod

mod

mod

mod

mod The 

The 

The 

The 

The 

The 

The 

The 

The 

gives similar results as those of the GT model. The point nowcasts of L

L

L

L

L

L

L

L

L
k

k

k

k

k

k

k

k

k,

,

,

,

,

,

,

,

,y

y

y

y

y

y

y

y

y

t

t

t

t

t

t

t

t

t
 and 















k

k

k

k

k

k

k

k

k,

,

,

,

,

,

,

,

,y

y

y

y

y

y

y

y

y

t

t

t

t

t

t

t

t

t
 are more similar 

throughout the model specifications, with a slight and positive difference between the models that 

include the Google Trends and the ones that do not, at the beginning of the out-of-sample period.

Figures S2 and S3 show the selection frequency of, respectively, the monthly and weekly Google 

Trends in the out-of-sample period. Some of the most selected search terms in both cases are: werk-

lozen (unemployed people), baan zoeken (job-search), curriculum vitae voorbeeld (curriculum vitae 

example), ww uitkering (unemployment benefits), ww aanvragen (to request unemployment benefits), 

resume, tijdelijk werk (temporary job) and huizenmarkt zeepbel (housing market bubble). Notice that 

the latter term (as well as ‘economische crisis’ (economic crisis) or ‘failliet’ (bankrupt), which are 

also frequently selected monthly Google Trends) is of economic uncertainty nature, rather than being 

job-search related. In additional analyses, that we do not report in this paper, we included only the 

latter type of search terms and we did not find them to have predictive power for the Dutch unemploy-

ment, which is now improved by the additional information contained in the search terms related to 

economic uncertainty.

The results of the empirical analysis can be summarised as follows. Targeting the Google Trends 
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found in Section 2 of the supplementary material). We test the assumptions on the estimated CC & 

GT models when two factors of the Google Trends are included, and which employ, respectively, the 

monthly Google Trends, and the weekly Google Trends with the additional iteration of the two-step 

estimator (as they yield the best results in terms of estimation and nowcast accuracy of the state vari-

ables of interest, when two factors of the Google Trends are included).

 

 

 

 

 

 

 

 

 F I G U R E  2  Nowcast of R
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 (which is the slope of the Dutch unemployment’s trend) with the labour force 

models. We denote with ‘Baseline’ the model that does not contain auxiliary series. ‘CC’ and ‘GT’ stand for the 

models that contain, respectively, the claimant counts and the Google Trends as auxiliary series, whereas ‘CC & GT’ 

is the model that contains both types of auxiliary series. The results for the GT and the CC & GT models refer to the 

setting where the monthly Google Trends are used, and two of their factors are included in the model
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We test the null hypothesis of univariate normality for each of the prediction error, with the Shapiro 

and Wilk (1965) and Bowman and Shenton (1975) tests, as suggested, respectively, in Harvey (1989) 

Chapter 5) and Durbin and Koopman (2012) Chapter 2). The former test is based on the correlation 

between given observations and associated normal scores, whereas the latter test is based on the mea-

sures of skewness and kurtosis. The p-values from the Shapiro–Wilk test are reported in Figures 5 and 

6 for the two different model specifications discussed above, respectively. For both model specifica-

tions, there is no (strong) evidence against the normality assumptions for the error terms of the labour 

force and the claimant counts series, as their corresponding p-values are above the confidence level 

of 0.05. This result suggests that the model is correctly specified for these series. The test instead re-

jects the null hypothesis of normality for most of the idiosyncratic components of the Google Trends. 

The normality assumption seems, therefore, not appropriate for the latter series, but as discussed in 

Sections 3.1 and 5, and examined in the simulation study of the supplementary material, this type of 

misspecification does not affect the consistency of the estimators of the state variables and the hy-

perparameters, and does not seem to influence the performance of our method, nor the distribution 

of the LR test which allows to perform inference on the correlation parameters. Notice that we do not 

control for multiple hypotheses testing in this case. If we would control for it, we would obtain less 

rejections of the null hypothesis of normality for the error terms of the Google Trends, but the conclu-

sions for the error terms of the labour force and the claimant counts series would stay the same. The 

conclusions from the Bowman–Shenton test are the same and the corresponding p-values are reported 

in Figures S4 and S5.

6 

6 

6 

6  

6  

6  

6  6  |

|

|

|

|

|

||  CON

 CON

 CON

 CON

 CON

 CON

 CON CONCL

CL

CL

CL

CL

CL

CLCLUSIONS

USIONS

USIONS

USIONS

USIONS

USIONS

USIONSUSIONS

This paper proposes a method to include a high-dimensional auxiliary series in a state space model in 

order to improve the estimation and nowcast of unobserved components. The method is based on a 

combination of PCA and Kalman filter estimation to reduce the dimensionality of the auxiliary series, 

originally proposed by Doz etal. (2011), while the auxiliary information is included in the state space 
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model as in Harvey and Chung (2000). In this way we extend the state space model used by Statistics 

Netherlands to estimate the Dutch unemployment, which is based on monthly LFS data, by includ-

ing the auxiliary series of claimant counts and Google Trends related to job-search and economic 

uncertainty. The strong predictive power of the former series, in similar settings, has already been 

discovered in the literature (see Harvey and Chung (2000) and van den Brakel and Krieg (2016)). 

We explore to which extent a similar success can be obtained from online job-search and economic 

uncertainty behaviour. The advantage of Google Trends is that they are freely available at higher fre-

quencies than the LFS and the claimant counts, and, in contrast to the latter, they are not affected by 

publications delays. This feature can play a key role in the nowcast of the unemployment, as being the 

only real-time available information.

A Monte Carlo simulation study shows that in a smooth trend model our proposed method can 

improve the MSFE of the nowcasts of the trend’s level and slope up to, respectively, around 25% and 

75% when in the simulation data generating process the correlation between the auxiliary series and 

the series of interest is high. These results are robust to misspecifications regarding the distribution of 

the idiosyncratic components of the auxiliary series. Therefore, our method does have the potential to 

improve the nowcasts of unobserved components of interest.

In the empirical application of our method to Dutch unemployment estimation and nowcasting, 

we find that our considered Google Trends (when first targeted with the elastic net) do in general 

yield gains in the estimation and nowcast accuracy, (respectively, up to 35% and 30% alone, and up 

to 40% and 23% when the claimant counts series is also included in the model) of the state variables 

of interest, with respect to the model which does not include any auxiliary series. This result stresses 

the advantage of using the high-dimensional auxiliary series of Google Trends, despite involving a 

more complex model to estimate, which is especially relevant for countries that do not have any data 

sources related to the unemployment (such as the registry-sourced series of claimant counts), other 

than the LFS. We also find that, under certain model specifications, including both claimant counts 

and Google Trends outperforms the model which only includes the former auxiliary series. This result 

is explained by the fact that the two auxiliary series have a positive impact on the estimation/nowcast 
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accuracy of different unobserved components which constitute the unemployment, thus yielding an 

overall improvement of the fit of the model. This also indicates that claimant counts and Google 

Trends do not bring redundant information for the prediction of the Dutch unemployment.

The magnitude of the above-mentioned gains is, nonetheless, sensitive with respect to the follow-

ing aspects of the data and the model specification. First, in our empirical application we employ both 

monthly and weekly Google Trends. The latter need to be aggregated to the monthly frequency in 

order to be included in the model, but allow to perform the nowcast on a weekly basis. We find that 

the former are less noisy and provide in general more accurate estimates/nowcasts of the state vari-

ables of interest, with respect to the latter. The predictive power of the monthly Google Trends for the 

Dutch unemployment is further corroborated by results from LR testing, which are in favour of their 

inclusion in the model. There is, instead, not strong and consistent evidence for this when the weekly 

Google Trends are employed.

Second, PCA involves the estimation of common factors that drive the Google Trends and in our 

method we relate these factors to the unobserved components that constitute the Dutch unemploy-

ment. Information criteria suggest that the Google Trends are driven by either one or two common 

factors. We find that including two factors yields, in general, less gains in accuracy, with respect to 

including one factor (due to the increased complexity of the model), but there is evidence that the 

second factor should also be included in the model in order to exploit all the predictive power that the 

Google Trends yield for the unemployment.

Finally, our estimation method is based on a two-step procedure. In the first step, the matrix of 

factors’ loadings and the covariance matrix of the idiosyncratic components of the Google Trends are 

estimated by PCA. In the second step, these matrices are replaced by their PCA estimates, in order to 

re-estimate the Google Trends’ factors and the unobserved components of the labour force series, with 

the Kalman filter. The estimation accuracy of these matrices might affect the predictive power of the 

Google Trends. We find that the predictive power of the weekly Google Trends can be improved (in 

order to yield similar gains as the ones obtained with the monthly Google Trends), with an additional 

iteration of the two-step estimation procedure, which should provide more accurate estimates of the 

two matrices.

As already mentioned, we generally find estimation/nowcast accuracy gains from the inclusion of 

the Google Trends, when they are first ‘targeted’, by selecting the ones that are relevant for the Dutch 

unemployment, based on the elastic net penalised regression. If the targeting is not first applied, we do 
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not find these gains. Nonetheless, in this case the results do not deteriorate with respect to the model 

that does not include any auxiliary series, suggesting that our method is able to ignore the inclusion 

of irrelevant auxiliary series, in the estimation/nowcast of unobserved components of interest. This 

result is corroborated in our Monte Carlo simulation study. Hence, our proposed approach provides 

a framework to analyse the usefulness of ‘Big Data’ sources, with little risk in case the series do not 

appear to be useful.

One limitation of the current paper is that it does not allow for time-variation in the relation be-

tween the unobserved component of interest and the auxiliary series. For example, legislative changes 

may change the correlation between unemployment and administrative series such as claimant counts. 

Additionally, one can easily imagine the relevance of both specific search terms as well as internet 

search behaviour overall to change over time. While such time-variation may partly be addressed by 

considering shorter time periods, decreasing the already limited time dimension will have a strong 

detrimental effect on the quality of the estimators. Therefore, a more structural method is required that 

extends the current approach by building the potential for time variation into the estimation method 

directly, while retaining the possibility to use the full sample size. Such extensions are currently under 

investigation by the authors.
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